Midlothian ISD Standards Based Report Card Rubric: Grade 2 Mathematics					
Report Card Section	Standards Assessed		Assessment of Mastery		
		Supporting Standards	Meets Standard Scored 3	Progress Being Made Toward Standard Scored 2	Area of Concern (Not making appropriate progress) Scored 1
FIRST REPORTING PERIOD					
	use standard, word, and expanded forms to represent numbers up to 1,200 2.2B	use concrete and pictorial models to compose and decompose numbers up to 1,200 2.2A (ongoing in 2nd \& 3rd 9 weeks)	The student can represent numbers up to 1,200 using words, expanded, and standard form. The student can use concrete and pictorial models to compose and decompose numbers up to 1,200 in more than one way as a sum of so many hundreds, so many tens, and so many ones.	The student can represent numbers up to 1,200 using pictures, words, expanded, and standard form. The student can use concrete and pictorial models to compose and decompose numbers up to 1,200 in more than one way as a sum of so many tens and so many ones.	The student can represent numbers up to 1,200 using objects or pictures. The student is able to compose and decompose numbers to 1,200 in one way using concrete models.
	use place value to compare and order whole numbers up to 1,200 using comparative language, numbers, and symbols (>, <, or =) 2.2D	generate a number that is greater than or less than a given whole number up to 1,200 2.2C (ongoing in 2nd \& 3rd 9 weeks) locate the position of a given whole number on an open number line 2.2E (ongong in 2nd \& 3rd 9 weeks) name the whole number that corresponds to a specific point on a number line 2.2F (ongoing in the 2nd, 3rd \& 4th 9 weeks) determine whether a number up to 40 is odd or even using pairings of objects to represent the number 2.7A	The student can compare and order whole numbers up to 1,200 . The student can represent the comparison using symbols (>, <, or =) and read the comparison using language such as greater than, less than and equal to. The student can generate a number that is greater than or less than a given whole number up to 1,200 . The student can locate the position of a given whole number up to 1,200 on an open number line, using reasonableness to account for spacing. The student can name the whole number up to 1,200 that corresponds to a specific point on a number line where all tick marks are not labeled. The student can determine whether a number up to 40 is odd or even and can explain using pairings of objects. (For example, the student uses objects to identify 32 as an even number and explains that each object has a "partner" and none are leftover.)	The student can compare two numbers up to 1,200 using comparative symbols, and occasionally uses the comparison language properly (>, <, or =) The student can generate a number that is greater than or less than a given whole number up to 1,200 . The student can locate the position of a given whole number up to 1,200 on an open number line, but does not take spacing into consideration. The student can name the whole number up to 1,200 that corresponds to a specific point on a number line where all other tick marks are labeled. The student can determine whether a number up to 9 is odd or even and can explain using pairings of objects. (For example, the student uses objects to identify 8 as an even number and explains that each object has a "partner" and none are leftover.)	The student can use place value to compare and order whole numbers up to 1,200. Use of symbols and language is difficult. The student can generate another number given a whole number up to 1,200 , but confuses greater than or less than. The student can locate the position of a number up to 1,200 on an open number line, based on order alone, when given one other number. The student can locate and read a number up to 1,200 that is labeled on the number line. The student can read numbers, but not identify them as odd or even.
	recall basic facts to add and subtract within 20 with automaticity 2.4 A (taught in 2nd \& 3rd, ongoing in 4th 9 weeks)		The student can use efficient strategies to recall basic facts to add and subtract within 20 with automaticity. The strategies are used seamlessly so that the facts appear to be memorized.	The student can add and subtract within 20 using manipulatives, including counting by 1 s on his/her fingers. The student does not use efficient strategies to generate the sums or differences.	The student can add and subtract within 10 using manipulatives, including counting by 1 s on his/her fingers.

Computations \& Algebraic Relationships	add up to four two-digit numbers and subtract two-digit numbers using mental strategies and algorithms based on knowledge of place value and properties of operations 2.4B (taught in 2nd \& 3rd, ongoing in 4th 9 weeks) *Note: this standard is about adding and subtracting, but the focus here is on ADDITION only.	use an understanding of place value to determine the number that is 10 or 100 more or less than a given number up to 1,200 2.7B (ongoing in the 2nd 9 weeks)	The student can add up to four two-digit numbers which have a sum up to 1,200 using mental strategies and algorithms based on knowledge of place value and properties of operations. The student is able to explain why he/she chose to use a strategy. (For example, when adding $40+23+$ 60 , a student may use the associative property to add 40 and 60 to make 100 first then add 23 to make 123.)	The student can add two two-digit numbers using a variety of strategies and algorithms based on knowledge of place value and properties of operations.	The student inconsistently adds two-digit numbers. The student may only be able to use one strategy and does not relate knowledge of place value or properties of operations.
	add up to four two-digit numbers and subtract two-digit numbers using mental strategies and algorithms based on knowledge of place value and properties of operations 2.4B (taught in 2nd \& 3rd, ongoing in 4th 9 weeks) *Note: this standard is about adding and subtracting, but the focus here is on SUBTRACTION only.	use an understanding of place value to determine the number that is 10 or 100 more or less than a given number up to 1,200 2.7B (ongoing in the 2nd 9 weeks)	The student can subtract two-digit numbers using mental strategies and algorithms based on knowledge of place value and properties of operations. The student is able to explain his/her chosen strategy.	The student can subtract two-digit numbers using a variety of strategies and algorithms based on knowledge of place value and properties of operations.	The student inconsistently subtracts two-digit numbers. The student may only be able to use one strategy and does not relate knowledge of place value or properties of operations.
	solve one-step and multi-step word problems involving addition and subtraction within 1,000 using a variety of strategies based on place value, including algorithms 2.4 C	represent and solve addition and subtraction word problems where unknowns may be any one of the terms in the problem 2.7C	The student solves onestep and multi-step word problems involving addition and subtraction within 1,000 using a variety of strategies based on place value, including algorithms.	The student solves onestep problems involving addition and subtraction within 1,000 using a variety of strategies based on place value, including algorithms.	The student can solve onestep word problems involving addition and subtraction within 1,000 using one strategy.
	generate and solve problem situations for a given mathematical number sentence involving addition and subtraction of whole numbers within 1,000 2.4D	represent and solve addition and subtraction word problems where unknowns may be any one of the terms in the problem 2.7C	The student generates and solves problem situations for a given mathematical number sentence involving addition and subtraction of whole numbers within 1,000 . The student can generate and solve the problem situation when given a number sentence where the unknown is any of the terms (For example, $34+23=\square, 34+\square=57$, $\square+23=57,57-\square=23$).	The student generates and solves problem situations for a given mathematical number sentence involving addition and subtraction of whole numbers within 1,000 . The student can generate and solve the problem situation when given a number sentence where the result is unknown (For example, $34+23=\square$ and $56-13=\square$).	The student solves a number sentence involving addition and subtraction of whole numbers within 1,000 .
	determine the value of a collection of coins up to one dollar 2.5A (ongoing in 4th 9 weeks)	use the cent symbol, dollar sign, and the decimal point to name the value of a collection of coins 2.5B (ongoing in 4th 9 weeks)	The student can determine the value of a collection of coins up to one dollar. The student can write the cent symbol, dollar sign, and the decimal point to name the value of a collection of coins.	The student can use relationships to count by twos, fives, and tens to determine the value of a collection of pennies, nickels, and/or dimes. At this level, students count a single type of coin. The student can write a number with the cent symbol to describe the value of a collection of coins.	The student can identify coins by value including pennies, nickels, dimes, and quarters. The student can write a number with the cent symbol to describe the value of a coin.
SECOND REPORTING PERIOD					
	recall basic facts to add and subtract within 20 with automaticity 2.4 A		The student can use efficient strategies to recall basic facts to add and subtract within 20 with automaticity. The strategies are used seamlessly so that the facts appear to be memorized.	The student can add and subtract within 20 using manipulatives, including counting by 1 s on his/her fingers. The student does not use efficient strategies to generate the sums or differences.	The student can add and subtract within 10 using manipulatives, including counting by 1 s on his/her fingers.

	classify and sort three-dimensional solids, including spheres, cones, cylinders, rectangular prisms (including cubes as special rectangular prisms), and triangular prisms, based on attributes using formal geometric language 2.8B	compose twodimensional shapes and threedimensional solids with given properties or attributes 2.8D	The student can classify and sort all threedimensional solids, including spheres, cones, cylinders, rectangular prisms (including cubes as special rectangular prisms), and triangular prisms, based on attributes using formal geometric language. The student can compose threedimensional solids with given properties or attributes.	The student can classify and sort some threedimensional solids, such as spheres, cones, cylinders, rectangular prisms (including cubes as special rectangular prisms), and/or triangular prisms, based on attributes using formal geometric language. The student can compose three-dimensional solids with given properties or attributes	The student can classify and sort some three-dimensional solids, such as spheres, cones, cylinders, rectangular prisms, and/or triangular prisms based on visuals. The student can compose three-dimensional solids when given the name or visual.
	classify and sort polygons with 12 or fewer sides according to attributes, including identifying the number of sides and number of vertices 2.8 C	create twodimensional shapes based on given attributes, including number of sides and vertices 2.8A compose twodimensional shapes and threedimensional solids with given properties or attributes 2.8D decompose twodimensional shapes such as cutting out a square from a rectangle, dividing a shape in half, or partitioning a rectangle into identical triangles and identify the resulting geometric parts 2.8E (ongoing in the 4th 9 weeks)	The student can classify and sort polygons with 12 or fewer sides according to attributes (number of sides and vertices).	The student can classify and sort some of the polygons with 12 or fewer sides according to a given attribute (number of sides and vertices).	The student can classify and sort some of the polygons with 12 or fewer sides.
			The student can create two-dimensional shapes based on more than one attribute (number of sides and vertices).	The student can create two-dimensional shapes based on a given attribute (number of sides and vertices).	The student can create twodimensional shapes when given the name.
			The student can compose twodimensional shapes with given properties or attributes (number of sides, vertices, etc.)	The student can compose two-dimensional shapes with given properties or attributes (number of sides, vertices, etc.)	The student can compose some two-dimensional shapes when given the name or a visual.
			The student can decompose twodimensional shapes into identical figures (triangles, squares, rectangles), describe the process, and identify the resulting geometric parts. They can decomnose one shane	The student can decompose twodimensional shapes into identical figures (triangles, squares, rectangles).	The student can decompose two-dimensional shapes but may not give attention to all parts being identical/equal.

	partition objects into equal parts and name the parts, including halves, fourths, and eighths, using words 2.3 A	explain that the more fractional parts used to make a whole, the smaller the part; and the fewer the fractional parts, the larger the part 2.3B use concrete models to count fractional parts beyond one whole using words and recognize how many parts it takes to equal one whole 2.3C and non-examples of halves, fourths, and eighths 2.3D	The student can partition objects into equal parts and name the parts, including halves, fourths, and eighths, using words. The student can explain that the more fractional parts used to make a whole, the smaller the part; and the fewer the fractional parts, the larger the part. The student can use concrete models to count fractional parts beyond one whole using words and recognize how many parts it takes to equal one whole. (For example: "onefourth, two-fourths, three-fourths, fourfourths, five-fourths" or one and one-fourth). The student can identify examples and nonexamples of halves, fourths, and eighths and explain why using vocabulary such as "halves", "fourths", "eighths", and "equal".	The student can partition objects into equal parts and name the parts, including halves, fourths, and eighths, using words. The student can explain that the more fractional parts used to make a whole, the smaller the part; and the fewer the fractional parts, the larger the part. The student can use concrete models to count fractional parts beyond one whole using words and recognize how many parts it takes to equal one whole. (For example: "one-fourth, two-fourths, three-fourths, four-fourths, five-fourths" or one and one-fourth). The student can identify examples and nonexamples of halves, fourths, and eighths and explain why using vocabulary such as "halves", "fourths", "eighths", and "equal".	The student can partition objects into equal parts and name the parts, including halves, fourths, and eighths, using words. The student can explain that the more fractional parts used to make a whole, the smaller the part; and the fewer the fractional parts, the larger the part. The student can use concrete models to count fractional parts beyond one whole using words and recognize how many parts it takes to equal one whole. (For example: "one-fourth, two-fourths, three-fourths, four-fourths, five-fourths" or one and one-fourth). The student can identify examples and non-examples of halves, fourths, and eighths and explain why using vocabulary such as "halves", "fourths", "eighths", and "equal".
	use standard, word, and expanded forms to represent numbers up to 1,200 2.2B	use concrete and pictorial models to compose and decompose numbers up to 1,200 2.2A (ongoing in 2nd \& 3rd 9 weeks)	The student can represent numbers up to 1,200 using words, expanded, and standard form. The student can use concrete and pictorial models to compose and decompose numbers up to 1,200 in more than one way as a sum of so many hundreds, so many tens, and so many ones.	The student can represent numbers up to 1,200 using pictures, words, expanded, and standard form. The student can use concrete and pictorial models to compose and decompose numbers up to 1,200 in more than one way as a sum of so many tens and so many ones.	The student can represent numbers up to 1,200 using objects or pictures. The student is able to compose and decompose numbers to 1,200 in one way using concrete models.

	use place value to compare and order whole numbers up to 1,200 using comparative language, numbers, and symbols (>, <, or =) 2.2D	generate a number that is greater than or less than a given whole number up to 1,200 2.2C (ongoing in 2nd \& 3rd 9 weeks) locate the position of a given whole number on an open number line 2.2E (ongong in 2nd \& 3rd 9 weeks) name the whole number that corresponds to a specific point on a number line 2.2F (ongoing in the 2nd, 3rd \& 4th 9 weeks) determine whether a number up to 40 is odd or even using pairings of objects to represent the number 2.7A	The student can compare and order whole numbers up to 1,200 . The student can represent the comparison using symbols (>, <, or =) and read the comparison using language such as greater than, less than and equal to. The student can generate a number that is greater than or less than a given whole number up to 1,200. The student can locate the position of a given whole number up to 1,200 on an open number line, using reasonableness to account for spacing. The student can name the whole number up to 1,200 that corresponds to a specific point on a number line where all tick marks are not labeled. The student can determine whether a number up to 40 is odd or even and can explain using pairings of objects. (For example, the student uses objects to identify 32 as an even number and explains that each object has a "partner" and none are leftover.)	The student can compare two numbers up to 1,200 using comparative symbols, and occasionally uses the comparison language properly (>, <, or $=$) The student can generate a number that is greater than or less than a given whole number up to 1,200 . The student can locate the position of a given whole number up to 1,200 on an open number line, but does not take spacing into consideration. The student can name the whole number up to 1,200 that corresponds to a specific point on a number line where all other tick marks are labeled. The student can determine whether a number up to 9 is odd or even and can explain using pairings of objects. (For example, the student uses objects to identify 8 as an even number and explains that each object has a "partner" and none are leftover.)	The student can use place value to compare and order whole numbers up to 1,200. Use of symbols and language is difficult. The student can generate another number given a whole number up to 1,200, but confuses greater than or less than. The student can locate the position of a number up to 1,200 on an open number line, based on order alone, when given one other number. The student can locate and read a number up to 1,200 that is labeled on the number line. The student can read numbers, but not identify them as odd or even.
THIRD REPORTING PERIOD					
	solve one-step and multi-step word problems involving addition and subtraction within 1,000 using a variety of strategies based on place value, including algorithms 2.4 C	represent and solve addition and subtraction word problems where unknowns may be any one of the terms in the problem 2.7C	The student solves onestep and multi-step word problems involving addition and subtraction within 1,000 using a variety of strategies based on place value, including algorithms.	The student solves onestep problems involving addition and subtraction within 1,000 using a variety of strategies based on place value, including algorithms.	The student can solve onestep word problems involving addition and subtraction within 1,000 using one strategy.
	generate and solve problem situations for a given mathematical number sentence involving addition and subtraction of whole numbers within 1,000 2.4D	represent and solve addition and subtraction word problems where unknowns may be any one of the terms in the problem 2.7C	The student generates and solves problem situations for a given mathematical number sentence involving addition and subtraction of whole numbers within 1,000 . The student can generate and solve the problem situation when given a number sentence where the unknown is any of the terms (For example, 34+23=■, 34+ロ=57, $\square+23=57,57-\square=23$).	The student generates and solves problem situations for a given mathematical number sentence involving addition and subtraction of whole numbers within 1,000. The student can generate and solve the problem situation when given a number sentence where the result is unknown (For example, $34+23=\square$ and $56-13=0$).	The student solves a number sentence involving addition and subtraction of whole numbers within 1,000 .

	determine the value of a collection of coins up to one dollar 2.5A	calculate how money saved can accumulate into a larger amount over time 2.11A distinguish between a deposit and a withdrawal 2.11C	The student can determine the value of a collection of coins up to one dollar. The student can calculate how money saved can accumulate into a larger amount over time, provides multiple examples and explains using appropriate academic vocabulary. (For example, the student uses a graph/picture/number sentence as a visual to his explanation to show how money saved each week results in more money saved.) The student can distinguish between a deposit and a withdrawal when looking at multiple situations.	The student can use relationships to count by twos, fives, and tens to determine the value of a collection of pennies, nickels, and/or dimes. At this level, students count a single type of coin. The student can explain that money saved can accumulate into a larger amount over time and provides examples. The student can define deposit and withdrawal using appropriate vocabulary.	The student can identify coins by value including pennies, nickels, dimes, and quarters. The student can state that money saved can accumulate into a larger amount over time. The student can identify a deposit and a withdrawal.
Data Analysis and Personal Financial Literacy	write and solve one-step word problems involving addition or subtraction using data represented within pictographs and bar graphs with intervals of one 2.10C	explain that the length of a bar in a bar graph or the number of pictures in a pictograph represents the number of data points for a given category 2.10A organize a collection of data with up to four categories using pictographs and bar graphs with intervals of one or more 2.10B draw conclusions and make predictions from information in a graph 2.10D	The student can solve one-step word problems involving addition and subtraction using data represented within pictographs and bar graphs with intervals of one. The student can explain that the length of a bar in a bar graph and the number of pictures in a pictograph represent the number of data points for a given category. The graph uses intervals of one or more. The student can collect, sort and organize data into 4 categories and create a graph with this data. The graph uses intervals of one or more. The student can draw multiple conclusions and make multiple predictions using information from bar graphs and pictographs.	The student can solve onestep word problems involving addition and subtraction using data represented within pictographs or bar graphs with intervals of one. The student can explain that the number of pictures in a pictograph represents the number of data points for a given category. The graph uses intervals of one or more. The student can collect, sort and organize data into 3 categories and create a graph that may match this data. The student can draw one conclusion and make one prediction using information from bar graphs and pictographs.	The student can interpret data represented in pictographs and bar graphs, but cannot solve word problems using the data. The student can explain that the number of pictures in a pictograph represents the number of data points for a given category only when each picture represents one data point. The student can collect data but may be inaccurate when sorting and organizing data into categories or transferring data into a graph. The student can draw a conclusion but is unable to make a prediction using information from bar and pictographs graphs.
	read and write time to the nearest one-minute increment using analog and digital clocks and distinguish between a.m. and p.m 2.9G		The student can read and write time to the nearest one-minute increment using analog and digital clocks and distinguish between a.m. and p.m.	The student can read and write time to the nearest hour, half-hour, or 15 minute-increment using analog and digital clocks and distinguish between a. m . and p.m.	The student can read and write time to the nearest hour and half-hour.

	determine a solution to a problem involving length, including estimating lengths 2.9E	find the length of objects using concrete models for standard units of length 2.9 A describe the inverse relationship between the size of the unit and the number of units needed to equal the length of an object 2.9B represent whole numbers as distances from any given location on a number line 2.9C determine the length of an object to the nearest marked unit using rulers, yardsticks, meter sticks, or measuring tapes 2.9D	The student can determine a solution to a problem involving length, including estimating lengths. The student can provide reasoning for the estimation, and it is reasonable. The student can explain objects measured with smaller units will take more units and objects measured in larger units will take fewer units. The student can find the length of multiple objects using concrete models for standard units of length and record the measurement using the correct units. The student can represent whole numbers through 1,200 as distances from any given location on a number line. The student can determine the length of an object to the nearest marked unit using rulers, yardsticks, meter sticks, and measuring tapes.	The student can determine a solution to a problem involving length, including estimating lengths. The student can explain objects measured with smaller units will take more units and objects measured in larger units will take fewer units. The student can find the length of objects using concrete models for standard units of length. The student can represent whole numbers through 1,200 as distances from 0 on a number line. The student can determine the length of an object to the nearest whole or half unit using a ruler.	The student can determine a solution to a problem involving length. The student can explain objects measured with smaller units will take more units and objects measured in larger units will take fewer units. The student can find the length of objects using concrete models for nonstandard units of length. The student can read numbers through 1,200 on a number line. The student can determine the length of an object to the nearest whole unit using a ruler.
FOURTH REPORTING PERIOD					

